The Crystal and Molecular Structure of O²,2'-Cyclouridine. Influence of O(2)–C(2') Cyclization on the Sugar Conformation of Pyrimidine Nucleosides

BY DIETRICH SUCK AND WOLFRAM SAENGER

Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, Germany (BRD)

(Received 24 November 1972; accepted 6 February 1973)

The molecular and crystal structure of O^2 , 2'-cyclouridine, a useful intermediate in the inversion or replacement of the O(2') hydroxyl group of uridine, has been investigated by X-ray analysis. The structure of the crystals, space group $P_{2_12_12_1}$, with cell dimensions a=13.681 (3), b=7.441 (2), c=18.242 (3) Å and two molecules in the asymmetric unit, was solved by direct methods and refined to a discrepancy index R=4.5% for 1762 independent reflexions. The cyclization between atoms O(2) and C(2') results in a considerable alteration of the geometry of the base compared with normal uridine derivatives. Strongly affected are the bond angles at C(2), N(1) and C(1'), which are directly involved in the formation of the wortstallographically independent molecules reflect the rigidity imposed on the ring system by the O(2)–C(2') cyclization. The orientation of the C(5')–O(5') bond is gauche-trans in both molecules. Within the crystal, hydrogen-bonded dimers of O^2 , 2'-cyclouridine form stacks along the b axis with alternating interplanar spacings of 3.3 and 3.8 Å respectively.

Introduction

Pyrimidine O^2 , 2'-cyclonucleosides have successfully been used as intermediates for the specific inversion or replacement of the ribose O(2')-hydroxyl group. Thus spongouridine (3- β -D-arabinofuranosyluracil) could be obtained by hydrolysis of O^2 , 2'-cyclouridine with dilute acid (Brown, Todd & Varadarajan, 1956) and a similar ring opening by treatment with anhydrous hydrogen halide gave the various 2'-halogeno-2'-deoxyuridines (Codington, Doerr, Praag, Bendich & Fox, 1961). From the reactivity of these cyclonucleosides one would expect the molecules to be strained to some extent. In order to establish the influence of the O(2)-C(2')-cyclization on bond angles and distances and on the sugar conformation in O^2 , 2'-cyclouridine,

we have investigated its molecular structure by X-ray structural analysis.

Materials and methods

We are grateful to Dr W. Guschlbauer for a sample of O^2 , 2'-cyclouridine. The material crystallized in the

A C 29B - 10*

form of stout colourless prisms in the orthorhombic space group $P2_12_12_1$ with two molecules per asymmetric unit. The crystallographic data presented in Table 1 were obtained from Weissenberg and precession photographs and measurements by means of an automatic Stoe four-circle diffractometer using graphite-monochromatized Cu K α radiation. The intensities of 1831 reflexions up to $\theta = 65^{\circ}$ were measured using the $\theta-2\theta$ scan technique and corrected for Lorentz and polarization factors, but not for absorption because of the small linear absorption coefficient (Table 1). From these data normalized structure factors E (Karle & Hauptman, 1956) were calculated.

Table 1. Crystallographic data

Space group $P2_{1}2_{1}2_{1}$ a = 13.681 (3) Å b = 7.441 (2) c = 18.242 (3) Molecules per cell Z=8 (two molecules per asymmetric unit) Cu Ka radiation $\lambda = 1.54182$ Å Density observed $\rho_{obs} = 1.623$ g cm⁻³ (flotation in a toluene/ CH₃I mixture). Density calculated $\rho_{ca1c} = 1.618$ g cm⁻³ Chemical formula C₉H₁₀N₂O₅ M. W. 226.19 Linear absorption coefficient $\mu = 11.7$ cm⁻¹

The structure was solved by direct methods using the program MULTAN (Main, Germain & Woolfson, 1970) which combines the cyclic application of the tangent formula (Karle & Hauptman, 1956) with multi-solution techniques (Germain & Woolfson, 1968). The starting set was automatically chosen by the program and consisted of 9 reflexions with large Evalues, including three origin reflexions and one enantiomorph defining reflexion. For all the 16 possible phase angle combinations within this starting set we obtained phase angles for the 231 E's > 1.45. From a Fourier synthesis (E map), calculated with the phase information of the most consistent solution, we found the positions of all the nonhydrogen atoms of the two cyclouridine molecules.

The initial R index $(R = \sum ||F_o| - |F_c|| / \sum |F_o|)$ of 23% for the 1762 significant reflexions dropped to 10% after three cycles of isotropic full-matrix least-squares refinement (Busing, Martin & Levy, 1962). We applied a weighting scheme based on counting statistics with 2% allowance for machine error (Stout & Jensen, 1968) and data with $F_o < 3/\psi_{F_o}$ were treated as unobserved and not included in the refinement process. All hydrogen atoms could be located in a subsequent difference Fourier synthesis and were assigned the isotropic temperature factors of the 'heavy' atoms to which they were covalently bound. After four cycles of anisotropic full-matrix least-squares refinement of the positional and thermal parameters of the hydrogen positions the average parameter shifts were less than

Table 2. Atomic coordinates in fractions of the crystallographic axes and thermal parameters

Thermal parameters are in the form $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl) \times 10^4 \right]$. Isotropic temperature factors are given for the hydrogen atoms. Estimated standard deviations for the last decimal place are given in parentheses. Coordinates for nonhydrogen atoms are $\times 10^4$ and for hydrogen atoms, $\times 10^3$.

(1) Mc	olecule A								
	x	У	Z	β_{11} or B	β_{22}	β_{33}	β_{12}	β_{13}	β23
N(1)	863 (2)	2669 (5)	3494 (2)	28 (2)	138 (7)	17 (1)	3 (3)	1(1)	-2(2)
C(2)	1032 (2)	2663 (5)	4215 (2)	24 (2)	112 (7)	19 (1)	9 (3)	0(1)	5(2)
O(2)	221 (2)	2285 (4)	4599 (1)	25 (1)	165 (6)	18 (1)	-0(2)	0 (1)	6 (2)
N(3)	1851 (2)	3003 (5)	4545 (2)	27 (2)	148 (7)	22 (1)	3 (3)	-5(1)	8 (2)
C(4)	2640 (3)	3406 (6)	4088 (2)	24 (2)	142 (8)	31 (8)	8 (3)	-2(1)	13 (3)
O(4)	3441 (2)	3740 (5)	4376 (2)	30 (1)	258 (8)	35 (1)	-15 (3)	-6(1)	17 (3)
C(S)	2497 (3)	3413 (7)	3304 (2)	32 (2)	195 (9)	25 (1)	1 (4)	5 (1)	5 (3)
C(6)	1612 (3)	3052 (6)	3021 (2)	32 (2)	162 (9)	20 (1)	10 (4)	4 (1)	0 (3)
C(1)	-1/6(3)	23/3 (6)	3320 (2)	27 (2)	139 (8)	20 (1)	4 (3)	-2(1)	-10 (3)
C(2)	-387(3) -1375(3)	1993 (5)	4089 (2)	24 (2)	122 (7)	22 (1)	-2(3)	-2(1)	0 (2)
$O(3^{\circ})$	-2321(2)	2696 (4)	4203(2)	23(2)	111(7) 146(5)	19(1)	-10(3)	-2(1)	-5(2)
C(4')	-1110(2)	4884(5)	3644(2)	20(1) 24(2)	140(3) 126(7)	$\frac{23}{17}(1)$	-13(2)	1(1)	-4(2)
$\tilde{C}(5')$	-491(3)	6355 (5)	3975 (2)	$\frac{29}{39}(2)$	120(7) 125(7)	21(1)	-14(4)	-2(1)	-2(2)
O(5')	-187(2)	7589 (4)	3431 (2)	47 (2)	179 (7)	26(1)	-25(3)	-4(1)	24(2)
O(1')	-620(2)	3933 (4)	3052 (1)	31 (1)	156 (5)	15 (1)	15(2)	-1(1)	-1(2)
H(5)	305 (3)	356 (7)	302 (2)	3.2689		(-)	(-)	- (.)	1 (2)
H(6)	146 (3)	288 (6)	250 (2)	2 ·7867					
H(1')	-25(3)	142 (7)	296 (2)	2.5616		x	У	Z	В
H(2')	- 89 (3)	67 (6)	415 (2)	2 ·5741	H(O3')	-261(3)	249 (6)	440 (2)	2.4553
H(3')	-134 (3)	385 (6)	472 (2)	2.2407	H(4')	-172 (3)	535 (6)	344 (2)	2.2829
					H(5')	6 (3)	587 (6)	424 (2)	2.5754
					H(5)	-83(3)	685 (6)	433 (2)	2.5/54
(2) Mo	lecule <i>B</i>				п(О))	27 (3)	031 (7)	346 (2)	3.2319
(_)	x	v	z	<i>B</i> 11	Baa	<i>B</i> ₂₂	Bur	ß.,	ß.,
N(1)	840 (2)	1088 (4)	-1801(1)	29 (1)	131 (6)	18 (1)	1 (2)	1 (1)	-1(2)
C(2)	1026 (2)	813 (5)	-1088(2)	$\vec{32}$ (2)	95 (6)	20(1)	6(3)	$\frac{1}{2}$	-1(2)
O(2)	211 (2)	331 (4)	-724(1)	26(1)	150 (5)	21(1)	-2(2)	-1(1)	17(2)
N(3)	1857 (2)	927 (4)	-757 (2)	31 (1)	159 (6)	2 1 (1)	-3(3)	-2(1)	14(2)
C(4)	2651 (3)	1426 (6)	-1188 (2)	32 (2)	155 (7)	26 (1)	-5(3)	1 (1)	2(3)
O(4)	3469 (2)	1502 (5)	- 909 (2)	30 (1)	309 (8)	34 (1)	-19(3)	-4(1)	17 (3)
C(5)	2486 (3)	1786 (6)	-1961 (2)	35 (2)	162 (8)	24 (1)	-4 (3)	8 (1)	6 (3)
C(6)	1597 (3)	1622 (5)	-2248(2)	40 (2)	137 (7)	18 (1)	3 (3)	4 (1)	4 (2)
C(1)	-204(2)	969 (5)	-1966(2)	28 (2)	104 (6)	21(1)	7 (3)	-3(1)	-3(2)
C(2)	-393(2)	104(3) 1409(5)	-1240(2)	32(2)	92 (6)	$\frac{22}{24}$	-2(3)	-4(1)	2 (2)
O(3')	-2287(2)	876 (4)	-1030(2) -1431(2)	$\frac{23}{20}(2)$	120 (7)	$\frac{24(1)}{40(1)}$	-6(3)	-1(1)	$\frac{7}{2}$
C(4')	-1142(2)	3191(5)	-1391(2)	26(2)	108 (6)	21(1)	-21(2)	-9(1)	14(2)
Č(5')	-544(3)	4369 (5)	-892(2)	$\frac{10}{44}(2)$	100 (6)	22(1)	-7(3)	$\frac{1}{2}$ (1)	(2)
O(5')	-210(2)	5904 (3)	-1279(1)	46 (1)	101 (5)	$\frac{1}{28}(1)$	-21(2)	-5(1)	6(2)
O(1')	-626(2)	2696 (3)	-2055(1)	36 (1)	100 (4)	17 (1)	3(2)	0 (i)	ĩũ
H(5)	303 (3)	214 (7)	-223(2)	3.1029	. ,	. ,	()	- (-)	- (-/
H(6)	144 (3)	160 (6)	-279 (2)	2.7625		x	У	Z	В
H(1')	-33(3)	31 (6)	-248(2)	2.2732	H(O3')	-246 (3)	- 35 (7)	-128 (3)	3.5007
H(2')	-81(3)	- 96 (6)	-130(2)	2.5557	H(4')	-173(3)	386 (6)	-155 (2)	2.4168
r1(3)	-134 (3)	143 (6)	- 55 (2)	2.4911	H(5')	-106(3)	456 (6)	-50(2)	2.6741
					п()) Ц(О5)	4(3)	300 (b) 606 (6)	-69(2)	2.1924
					11(0))	34 (3)	000 (0)	- 107 (4)	5.1034

Fig. 1. Bond angles (a) and distances (b) in O^2 , 2'-cyclouridine. Data for molecule B are given in parentheses. The average estimated standard deviations (e.s.d.) are 0.005 Å and 0.3° for bonds and angles not involving hydrogen atoms. The hydrogen-containing bond angles within the sugar residues, not shown in the figure, are in the normal range, around 110°.

 $\frac{1}{3}$ the estimated standard deviations. The final R index for the 1762 significant reflexions is 4.5%, and for all the 1831 data, 5.5%.

Results and discussion

In Tables 2, 3, 4 and 5 are listed the final atomic parameters, the deviations of some atoms from the least-

 Table 3. Deviations (Å) from least-squares planes

 through several parts of molecules A and B

The plane-defining atoms are marked by *.

(a) Ba	se					
		Ia	Ib	IIa	IIb	1
	N(1)	0.002*	0.013*	· - 0·028	3* 0·0:	54*
	C(2)	-0.004*	0.009*	• 0.009	°° − 0·00)8*
	O(2)	0.014	0.011	0.015	5* -0.04	43*
	N(3)	0.001*	- 0·001*	• 0.062	2 - 0.00	06
	C(4)	0.003*	0.007*	' 0·071	0.04	40
	O(4)	0.006	0.059	0.120) 0.08	37
	C(5)	0.004*	-0.003*	• 0.020) 0.0	73
	C(6)	0.001*	-0.007*	* - 0·024	↓ 0·0′	73
	C(1')	0.112	-0.109	0.033	S* −0.0°	73*
	C(2')	0.028	0.084	-0.029)* 0·0	69*
(b) Su	gar					
(-)	IIIa	IIIb	IVa	IVb	Va	Vb
C(1')	-0.024*	0.077*	0.075*	-0.046*	0.000*	0.000*
C(2')	0.023*	-0.073*	-0.043*	0.027*	0.000*	0.000*
C(3')	-0.014*	0.046*	- 0.389	0.505	- 0·109	0.339
O(3')	-1.355	1.420	-1.805	1.919	- 1.474	1.748
C(4')	0.423	-0.476	0.046*	-0.029*	0.338	-0.208
C(5')	1.903	-1.963	1.439	-1.415	1.804	-1.644
O(5′)	2.298	-2.380	1.857	-1.885	2.214	-2.110
O(1')	0.016*	-0.051*	-0.078*	0.048*	0.000*	0.000*

Coefficients of plane equations in the form lX + mY + nZ + p = 0where X, Y and Z are along a, b, and c respectively

	1	m	n	р
Ia	-0.2368	0.9707	0.0403	-1.902
Ib	0.1878	- 0.9605	-0.2052	- 0.099
IIa	-0.2095	0.9754	0.0683	-2.153
IIb	0.1974	- 0.9515	-0.2361	-0.178
IIIa	0.6938	0.5788	0.4286	-3.475
IIIb	-0.6561	-0.4692	-0.5911	- 1.887
IVa	0.8293	0.4447	0.3384	-2.560
IVb	-0.8265	-0.3534	-0.4382	- 1.593
Va	0.7292	0.5523	0.4041	- 3.247
Vb	-0.7674	-0.4078	-0.4948	- 1.694

Table 4. Dihedral angles defining the conformation of the sugar residues in O², 2'-cyclouridine

B

	Molecule A	Molecule
C(6) - N(1) - C(1') - C(2')	179.3	176·6°
C(1')-C(2')-C(3')-C(4')	- 19.7	- 28.7
C(2')-C(3')-C(4')-O(1')	+28.3	+ 34.4
C(3')-C(4')-O(1')-C(1')	-27.2	-27.3
C(4')-O(1')-C(1')-C(2')	+14.4	+8.7
O(1')-C(1')-C(2')-C(3')	+4.2	+13.3
O(5')-C(5')-C(4')-O(1')	+ 56-1	+54.6
O(5')-C(5')-C(4')-C(3')	+174.9	+173.7
O(2) - C(2') - C(3') - O(3')	-148.3	-162.5
C(1')-C(2')-C(3')-O(3')	+ 98.3	+84.1
O(3')-C(3')-C(4')-C(5')	+147.6	+156.3
O(3') - C(3') - C(4') - O(1')	- 89.1	+ 80.0

squares planes through several parts of the two molecules within the asymmetric unit, the dihedral angles describing the conformation of the sugar moieties and the observed and calculated structure factors. Bond angles and distances within the two molecules are presented in Fig. 1. Figs. 2 and 3 represent projections

Table 5. Observed and calculated structure factors ($\times 10$) for O^2 , 2'-cyclouridine

DIETRICH SUCK AND WOLFRAM SAENGER

н	ĸ	ι	F 08 S	FCAL	H	K (L FO	095 F	TAL	н	* 1	FC85	FCAL	×	ĸ	L FOR	s r	CAL	ж	۲	ι	r ce s	FCAL	н	ĸ	L P	095	FCAL	н	x	ιr	0BS 1	FCAL
第一的社校ははカイクフェッムグラキロ語はははのインマッストラチャがはなけれのインフィッスティーロにはなりフィックのコート・フィックロード・インフィッス・ファックロード・マンマ・マンマッシュ・ローンマッス	* 87.000		9 72 11 6530 4 5751 87 81 87 72 72 70 07 14 87 19 7 72 10 71 4 41 4 41 4 71 77 77 7 77 77 77 77 77 77 77 77 77 7	アレーング 10150700 4055 2010 11 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	א אז מישור של משור של מש		上		r all 9710 9710 9711 8 9 127 3 171 471 472 70 70 77 77 70 70 70 70 70 70 70 70 70	ボールのほけができっていたが、キャイスのほけがでしっていた。ホイルクロにいっていた。メステロがのりってきのクラスキのイフィール・イアルクにいたいとうスキイメラルのバリアバウィーンルメステルでがけた。マンルマングログロ		φ φ		# \$79857789010101773656789011774567617711714745978901170173456789011701724+67690117017745674661401170145674661		L 2227277777777777777777777777777777777	そ、 とそそのそのかったりのうちかとうかいかいたちのほうかった。 のうちゃ そう ゆうしゅ かっかい ちょう オーマル マイト ちょう げっちゅう いい うちょう ブラン ちんのゆけ アイリング いいかい ひがっかい アイマング アイン ひかい		3 きゅうちょうのいいいいしょうきゅうホッチョンがないまです。そうだいいいいでは、そうためのパインショウボックテライン・キャイナム しょうてん ちょうてん ちょうせいいいい マンチャル ロンド・チャック いいりょうせん				TC 41500 # 61976 * 1911/1979 1907 * 00344 # 14444 1949 # 14444 510 * 1914 # 1466 * 1411/1979 * 1170 * 1	***************************************	x >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	上,每次整洁房外的方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方	9 97#773#869,1411 99147711774771177477171777777777777		ビーシャル ゆうせん サファ キャビル スティル スティー クスロイクシャン ちゅうか パイン・キャック スライキャイン スティット キアフィット ビー・ファイル・ドレー・ファル・バー・ファル・バー・ファル・ド	z >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	B 4475	ται 1 μαριστά τη

of the crystal structure along the b and c axes respectively.

(a) Conformation of the molecules

The uracil ring systems as well as the five-membered rings consisting of atoms N(1), C(2), O(2), C(2') and C(1') are essentially planar (Table 3). The interplanar angle between the six- and five-membered rings is about 2° in both molecules. The puckering of the fivemembered sugar rings consisting of atoms C(1'), C(2'), C(3'), C(4') and O(1') is somewhat different in molecules A and B, which is obvious from the deviations of the atoms from the four-atom least-squares planes (Table 3) and the endocyclic dihedral angles (Table 4). The best four-atom plane in molecule A is comprised by atoms C(1'), C(2'), C(3') and O(1') with atom C(4') being displaced by 0.423 Å to the same side of this plane as C(5') (plane IIIa of Table 3). The C(1')-O(1') and C(2')-C(3') bonds are nearly coplanar, the dihedral angle O(1')-C(1')-C(2')-C(3') being only $4\cdot 2^{\circ}$. Thus the conformation of the sugar moiety of molecule A is C(4')-endo. The sugar ring of molecule B however shows a twist conformation rather than an envelope form and should be termed C(4')-endo-C(3')exo (planes IIIb, IVb, Vb of Table 3). Most of the nucleosides so far investigated exhibit a C(2')-endo or C(3')-endo sugar puckering. The unusual puckering modes found in this crystal structure have to be attributed to the cyclization between atoms C(2') and O(2) holding C(2') and C(1') in a rather rigid arrangement. A similar geometric situation due to a cyclization through a five-membered ring occurs in the 2'.3'- cyclophosphates (Saenger & Eckstein, 1970; Coulter & Greaves, 1970); the O(1')-endo conformation found in one of the two molecules of sodium cytidine-2',3'-cyclophosphate (Coulter & Greaves, 1970) corresponds to the C(4')-endo conformation of molecule A of O^2 , 2'-cyclouridine.

The orientation of the C(5')-O(5') bond with respect to bonds C(4')-O(1') and C(4')-C(3') is gauche-trans in molecules A and B; the corresponding dihedral angles are near 60° and 180° respectively (Table 4). The most common conformation around the C(4')-C(5')bond in nucleosides is gauche-gauche (Sundaralingam, 1965; Shefter & Trueblood, 1965). It cannot be decided from this analysis if the gauche-trans conformation found in O^2 , 2'-cyclouridine is due to hydrogen bonding requirements or if it is due to unfavourable short contacts between O(5') and the heterocyclic ring system in case of a gauche-gauche conformation.

(b) Bond angles and distances

Comparable bond distances and angles within molecules A and B, with only a few exceptions, show no significant differences (Fig. 1). The maximum difference found for the O(3')-C(3')-C(4') bond angle (3.9°) could be attributed to the different sugar puckering.

The cyclization between atoms O(2) and C(2') results in a considerable alteration of the geometry of the base compared to normal uracil or uridine derivatives. The most prominent difference within the uracil

moiety is the formation of the double bond in O^2 , 2'-cyclouridine between atoms C(2) and N(3) of length* 1.293 Å and the relatively short C(2)–N(1) distance, 1.338 Å, while in normal uracil derivatives these bonds were found to be 1.381 (22) Å and 1.374 (19) Å respectively (Voet & Rich, 1970).

The remaining bonds within the uracil moiety however are not changed significantly. This is somewhat unexpected because from the possible resonance forms of O^2 , 2'-cyclouridine one would expect the bonds N(1)-C(2) and N(3)-C(4) to have about equal amounts of double-bond character and the C(4)-O(4) bond to show partial single-bond character. Although the resonance forms (a) and (b) result in an aromatic system, their contributions are apparently small.

* Throughout the following discussion averaged data for both O^2 , 2'-cyclouridine molecules are used.

Fig. 2. Projection of the crystal structure along the b axis.

The C(2)–O(2) bond (1·344 Å) is significantly shorter than a C–O single bond [1·426 (5) Å; Sutton, 1965) and resembles the average C–O bond length in aromatic phenols or ethers [1·36 (1) Å; Sutton, 1965], whereas the O(2)–C(2') bond (1·462 Å) is even longer than the average C–O single bond. Kartha, Ahmed & Barnes (1962) reported similar aromatic and aliphatic C–O bond distances of 1·37 (2) Å and 1·47 (2) Å for the five-membered cyclic ether within codeine hydrobromide dihydrate.

As one would expect, the bond angles at N(1), C(2)and C(1') are significantly different from those observed in uridine. The angles N(1)-C(2)-N(3), C(6)-N(1)-C(1') and N(3)-C(4)-C(5) are increased by 12.0, 7.6 and 4.7° respectively, whereas the angles N(1)-C(2)-O(2), C(1')-N(1)-C(2), N(1)-C(1')-C(2') are decreased by 11.4, 5.0 and 12.9° respectively, compared with the average values for uridine derivatives (Voet & Rich, 1970). The decrease of the latter bond angles enables bond formation between atoms O(2) and C(2'). The decrease of the C(2)-N(3)-C(4) bond angle of 10.5° is consistent with the observation, that the endocyclic angle at a nitrogen atom within a planar sixmembered ring is about 10° smaller if there is no exocyclic bond attached to it (Singh, 1965; Sundaralingam & Jensen, 1965).

The bond distances within the sugar moieties are in general not affected by the formation of the additional 5-membered ring and agree well with data found for other ribose (Saenger & Eckstein, 1970) or arabinose (Saenger, 1972) residues. Much more affected are the bond angles, especially at C(1') (discussed above) and C(2') but also at C(3') and C(4'). While the differences

Fig. 3. Stacking of molecules along b; projection approximately along the c axis.

between the angles at C(1') and C(2') in O^2 , 2-cyclouridine and in normal ribose and arabinose residues should be considered to be a direct consequence of cyclization, differences between the corresponding exocyclic angles at C(3') and C(4') could be attributed to the unusual sugar puckering in O^2 , 2'-cyclouridine.

(c) Packing arrangement

The packing of the O^2 , 2'-cyclouridine molecules within the crystal is depicted in Figs. 2 and 3 which represent projections of the crystal structure along the b and c axes respectively. The base planes of molecules A and B form an angle of about 30° and are situated roughly parallel to the a, c plane. The bases are stacked along **b** at alternating distances of about 3.3 and 3.8 Å (Fig. 3). The C(4)-O(4) bond of one molecule overlaps with the ring system of the neighbouring molecules (Fig. 2). This type of base stacking involving overlap of polar groups with an aromatic ring system is quite common in nucleoside and nucleotide structures (Bugg, Thomas, Sundaralingam & Rao, 1971). The molecules form stacked dimers which are linked by two hydrogen bonds between atoms O(4) A and O(5') B (2.712 Å) and atoms O(4) B and O(5') A (2.727 Å), Fig. 3. Two further hydrogen bonds between atoms O(3') A and O(3') B and atoms N(3) A and O(3') A of 2.812 Å and 2.860 Å respectively link molecules in different stacks (Fig. 2).

The authors wish to thank F. Cramer for generous support and W. Guschlbauer for supplying suitable crystals of O^2 , 2'-cyclouridine. We gratefully acknowledge the excellent technical assistance of Miss U. Wittenberg. D.S. is indebted to the Deutsche Forschungsgemeinschaft for a fellowship.

References

- BROWN, D. M., TODD, A. R. & VARADARAJAN (1956). J. Chem. Soc. pp. 2388-2393.
- BUGG, C. E., THOMAS, J. M., SUNDARALINGAM, M. & RAO, S. T. (1971). *Biopolymers*, 10, 175–219.
- BUSING, W. T., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CODINGTON, J. F., DOERR, I., PRAAG, P. V., BENDICH, A. & FOX, J. J. (1961). J. Amer. Chem. Soc. 83, 5030-5031.
- Coulter, C. L. & Greaves, M. L. (1970). Science, 169, 1097–1098.
- GERMAIN, G. & WOOLFSON, M. M. (1968). Acta Cryst. B24, 91–96.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651.
- KARTHA, G., AHMED, F. R. & BARNES, W. H. (1962). Acta Cryst. 15, 326-333.
- MAIN, P., GERMAIN, G. & WOOLFSON, M. M. (1970). MULTAN. A system of computer programs for the automatic solution of noncentrosymmetric crystal structures. York, Louvain.
- SAENGER, W. & ECKSTEIN, F. (1970). J. Amer. Chem. Soc. 92, 4712–4718.
- SAENGER, W. (1972). J. Amer. Chem. Soc. 94, 621-626.

SHEFTER, E. & TRUEBLOOD, K. N. (1965). Acta Cryst. 18, 1067–1077.

- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination. New York: Macmillan.
- SUNDARALINGAM, M. (1965). J. Amer. Chem. Soc. 87, 599–606.

Acta Cryst. (1973). B29, 1330

- SUNDARALINGAM, M. & JENSEN, L. H. (1965). J. Mol. Biol. 13, 930–943.
- SUTTON, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. London: The Chemical Society.
- VOET, D. & RICH, A. (1970). Progr. Nucleic Acid Res. Mol. Biol. 10, 183-265.

The Crystal Structure of CsMnCl₃ and a Summary of the Structures of RMX₃ Compounds*

BY TING-I LI AND G. D. STUCKY

School of Chemical Sciences and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, U.S.A.

AND G. L. MCPHERSON

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, U.S.A.

(Received 26 July 1972; accepted 12 February 1973)

Cesium trichloromanganate, CsMnCl₃, has been found by single-crystal X-ray diffraction studies to possess rhombohedral symmetry and to crystallize in the space group $R^{3}m$. At 23 °C, the hexagonal unit-cell lattice constants are $a = 7\cdot290$ (5) and $c = 27\cdot317$ (4) Å with $V = 1257\cdot2$ Å³, M.W.(calc) 293·63, Z = 9, $D_M = 3\cdot35$ (4), $D_X = 3\cdot49$ g cm⁻³. Full-matrix least-squares refinement of 481 observed threedimensional diffractometer data (Mo K α) led to a final weighted residual of 0.094 on F. The compound consists of facial-bridged [MnCl₆]⁴⁻ octahedral trimers with each trimer linked to other trimers by sharing corners in such a way that the trimers spiral around the trigonal axis. The crystallographic site symmetries of the manganese atoms of a trimer. There are three crystallographically unique manganesechlorine distances, 2·514 (3), 2·545 (9), and 2·557 (14) Å. The latter two facial-bridged distances compare favorably with the Mn-Cl distance 2·560 Å in (CH₃)₄NMnCl₃. The synthesis, lattice parameters, and space groups of the previously unreported compounds CsVI₃, CsCrI₃, CsNiI₃ and CsMgI₃ are described. Using the available structural data, the crystallographic store of RMX₃ (R = univalent cation, M = divalent transition metal cation, X = halogen anion) compounds can be correlated with the properties of the individual ions, R, M, and X. The relation of these properties to the structural types of RMX₃ is briefly discussed.

Introduction

Compounds with the general formula CsMX₃ form a class of structurally related compounds whose crystal geometry can be described as a stacking of ordered, close-packed CsX₃ layers, with the M cations filling octahedral sites between these layers. There are two possible types of stacking of CsX₃ layers, cubic and hexagonal, both of which are observed (Longo & Kafales, 1969). It is also possible to have various combinations of cubic and hexagonal packing within the same crystal lattice. Complete or partial structural data published for CsMgCl₃ (McPherson, Kistenmacher & Stucky, 1970), CsVCl₃ (Seifert & Ehrlich, 1959), CsCrCl₃ (McPherson & Stucky, 1972), CsFeCl₃ (Seifert & Klatyk, 1966), CsCoCl₃ (Soling, 1968), CsNiCl₃ (Tishchenko, 1955), and CsCuCl₃ (Schlueter, Jacobson & Rundle, 1966) show that all the complexes have the

same hexagonal close-packed structure except those of Cr(II) and Cu(II). The latter two compounds are subject to the Jahn–Teller effect and the Cu(II) complex in particular shows differences of 0.2 to 0.4 Å in metal–halogen bond distances.

In this paper, we report the results of a complete single-crystal structural investigation of CsMnCl₃. Initial preliminary results obtained from powder X-ray studies by Kestigian, Croft & Leipzig (1967) demonstrated that CsMnCl₃ has hexagonal symmetry with a=b=7.288, c=27.44 Å, and Z=9. This is an unusual number of molecules per unit cell for a CsMX₃ system and a detailed study of the structure of this compound seemed important in order to understand the structural and magnetic properties of RMX₃ complexes. It is also the purpose of this paper to show that through the correlation of the available data for known RMX₃ structures, it is possible to make some generalizations concerning the factors which determine the type of structure that is obtained. Interesting magnetic and spectroscopic properties of these one-dimensional

SINGH, C. (1965). Acta Cryst. 19, 861-867.

^{*} This work was supported by the Advanced Research Projects Agency under Contract HC-15-67 CO221.